An adaptive method for combined covariance estimation and classification

نویسندگان

  • Qiong Jackson
  • David A. Landgrebe
چکیده

In this paper a family of adaptive covariance estimators is proposed to mitigate the problem of limited training samples for application to hyperspectral data analysis in quadratic maximum likelihood classification. These estimators are the combination of adaptive classification procedures and regularized covariance estimators. In these proposed estimators, the semi-labeled samples (whose labels are determined by a decision rule) are incorporated in the process of determining the optimal regularized parameters and estimating those supportive covariance matrices that formulate final regularized covariance estimators. In all experiments with simulated and real remote sensing data, these proposed combined covariance estimators achieved significant improvement on statistics estimation and classification accuracy over conventional regularized covariance estimators and an adaptive Maximum Likelihood classifier (MLC). The degree of improvement increases with dimensions, especially for ill-posed or very ill-posed problems where the total number of training samples is smaller than the number of dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques

Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...

متن کامل

Desing And Implementation of Adaptive Active Filters for Exact Estimation And Elimination of AC Network Distortions

In recent years, active filters have been considered and developed for elimation of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory in presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002